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Abstract. Two recursion formulae are deduced for the construction of inner- and outer- 
product isoscalar factors, respectively, for the symmetric group, by which the corresponding 
coupling coefficients can be easily obtained. A formula for the evaluation of the isoscalar 
factor for the subgroup chain U( N )  3 U( N - 1) is proposed based on the relation between 
the outer-product coupling coefficient for the standard basis of the symmetric group and 
Clebsch-Gordan coefficient for the canonical basis of the unitary group. The calculation 
procedures are presented and the properties of those coefficients are investigated. 

1. Introduction 

The group theoretical techniques of the symmetric and unitary groups play a very 
important role in physics and quantum chemistry for describing the properties of 
many-particle systems. Wigner and Racah have emphasised that one of the major 
problems standing in the way of the application of group theory to physical and 
chemical topics is the construction of Clebsch-Gordan ( C G )  coefficients which reduce 
the direct product of irreducible representation matrices. CG coefficients for finite 
groups and compact Lie groups can be obtained by the projection operator method 
(Koster et a1 1963, Schindler and Mirman 1977,1978), diagonalisation of the representa- 
tion matrix of certain operators such as the Dirac character (Bayman and Lande 1966, 
Chen et a1 1985), Racah’s infinitesimal operator (de Swart 1963, Haacke et a1 1976) 
and the build-up principle for the isoscalar factor based on the recoupling relations 
(Wybourne 1974). The double coset analysis for the coefficients for the groups S, and 
U ( N )  was given by Sullivan (1973, 1975, 1978a, b, 1980). 

At present, an extensive literature exists on the computation of CG coefficients 
based on these approaches. Recent progress has been made by Chen et a1 (1985), 
who introduced the E F  method for the calculation of CG coefficients for the 
symmetric and unitary groups by solving linear eigenfunction equations of the so-called 
csco which are formally similar to the eigenfunction equations in quantum mechanics, 
or equivalently, by diagonalising the csco. Nevertheless, those methods have some 
serious drawbacks. The major one is that they can only provide tables of calculated 
CG coefficients rather than a direct computational formula from which CG coefficients 
for the related group can be conveniently evaluated, as one always desires such a 
formula for simplifying the numerical calculation programmes of quantum mechanics 
and chemistry. 

The main point of the projection operator method, which is also frequently used 
for construction of CG coefficients, can be briefly described as follows. For some types 
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of symmetry adapted bases lT(y)A) of group G, such as the standard Young- 
Yamanouchi basis of group S , ,  we define a projection operator 

The basis I r ( y l A )  can be expanded by an orthonormal complete set I C )  
Ir(Y)A) = c lc)(c Ir(Y)A). (2) 

C 

It is easy to prove that the symmetry coefficient in the above expansion is 

and the normalisation factor is 

N = [(r( y’)A I c’)]-’. (4) 

This shows that when projection operators are exploited to calculate some symmetry 
coefficients, the normalisation factor is just another coefficient. If I C )  is chosen as the 
direct product function of two states, we have 

i.e. the symmetry coefficient is just a CG coefficient. Equation (3) can also be used to 
evaluate the transformation coefficients which relate different symmetry adapted bases. 
It  seems that the application of the projection operator method requires a knowledge 
of the representation matrix of every group element and takes the summation over all 
the group elements, so that it is complex and tedious for a high-order group, especially 
for the symmetric group of large n. 

It is evident that if the group summation can be greatly simplified and made easier 
to carry out, equation (3) provides a direct computation formula for CG and other 
symmetry coefficients. It has been shown (Li and Zhang 1986, Zhang and Li 1986) 
that the powerful double coset technique can be used to simplify greatly the required 
computation. The following sections describe the method for the construction of the 
various coupling coefficients for the symmetric and unitary groups using the double 
coset technique. 

2. Inner-product coupling coefficient for the symmetric group 

In handling some many-particle problems, one is interested in a coupled wavefunction 
of subspaces characterised by an irreducible representation of the symmetric group 
S , ,  i.e. in the coupled function 

where the coefficients ([A][pu]rs 1 [ v]t) are called the inner-product coupling coefficients 
( IPCC). Hamermesh (1962) developed a recursion equation for IPCC for S ,  by introduc- 
ing a so-called K coefficient, but the computation method is practically too complex 
and tedious to carry out. In  the following we propose a new convenient recursion 
formula from which the IPCC can easily be calculated. 
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Define the V coefficient ( 3 - j  or 3 - j m  symbol) for S, as follows: 

wherefI,] is the dimension of the representation [ V I .  Since l[A]r), [PIS), I[ v]t) are the 
standard basis vectors which are denoted by Young tableaux or Yamanouchi symbols 
and adapted to the subgroup chain S, 3 S,-l 3 . .  .I S , ,  the V coefficient for S, can 
be expressed by the product of the V coefficient for S,-l and an isoscalar factor (also 
called the coupling factor, 3 - j m  factor or reduced coupling coefficient) for the subgroup 
chain S, 3 S,-] ( I ,  coefficient for short): 

[ A  1 [ P I  
r s t  A - 1, rnl [ P  - 1, Sfll [ v -  1, [,I, 

where i and j are the multiplicity indices. Then V coefficients can be obtained by 
successive products of the corresponding I ,  coefficients. By using equation ( 3 ) ,  we have 

In the double coset decomposition Sfl-l\/S,>-l of S, ,  there are two distinct double 
cosets which are represented by two double coset generators e^ (the identity element) 
and the transposition ( n  - 1, n )  respectively. Considering the effects of the operation 
of group elements both to the left and the right of matrix elements in equation (8), 
we obtain a recursion formula of I ,  coefficients: 

[ A  1 [PI [.I1 [ A  1 [PI ? ' I  ( [A - 1, rn I [ P  - 1, s n l  v - 1 > f n  1,) ' ( [A  - 1, u n I  [ P  - 1, u n l  [ v - 1, w n I m  

U,, - I L,, - 1 n,, - I 

[ A  - 1, rnl  

[ A  - 1, U n l  

[ P  - 1,  s,l 
[ A  - 2 ,  rnrn-11 [ P  -2 ,  S n S n - 1 1  L V - 2 ,  f n t n - - ~ I p  

[ P  - 1, U,] 

" ( [ A  - 2 ,  ~ , u n - l I  [ P - 2 ,  u f l u f l - ~ I  i v - 2 ,  w n W n - ~ l p  

XD~~!, ,_ , .u , ,u , ,~ , (n-1,  n ) ~ ~ ~ , - l , L , , L , , ~ l ( n - l ,  n ~ D ~ ~ ~ , - l , n , , ~ ~ , , - l ( n - l ,  n)] ( 9 )  

where the labels i, j ,  m, p are the multiplicity indices which are required when the 
multiplicity in the reduction of the direct product of two representations is greater 
than one. [ A  - 1, r,] is the Young diagram of S,-l which is deduced by detaching the 
square for the location of the index n from the Young diagram [ A ]  of S, .  The Young 
diagrams of S,-2 in equation (9) must satisfy the following relations: [ A  - 2 ,  r ~ , - ~ ]  = 
[ A - 2 , u , u , - , l , [ ~ - 2 , s , s , , - ~ 1 = [ ~ - 2 ,  u ,u , - , I and[~-2 ,  tn tn- l l=[v-2 ,  W,,W,-~]. Due 
to the simple expression for the matrix elements of transposition ( n  - 1, n),  the formally 
complicated equation (9) may result in a simple summation. The greater the difference 
between r, and U,, s, and U,, t ,  and w,, the simpler the summation on the right-hand 
side of equation (9). 
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The absolute value and the related phase factor of the I ,  coefficients are fully 
determined by equation (9), but the overall phase factors depend on a different 
convention. In accordance with the extended Condon-Shortley convention for phase 
factors (Wybourne 1974), we take 

where r"' and t"' are the highest-weight bases for [ A ]  and [ U ]  respectively. The Young 
tableau of rm is obtained by assigning n natural numbers successively into the Young 
diagram [ A ]  in ascending order from left to right and from top to bottom (the natural 
order), and the corresponding Yamanouchi symbol ( r r r r - l  . . . r r )  of the tableau is 
called the greatest. Under this convention, the value and phase factor of the I ,  coefficient 
with the form of (10) can be completely calculated, and then, taking this I ,  coefficient 
as the normalisation factor in equation (3), the other I ,  can be evaluated by (9). For 
example, we can calculate the I ,  coefficients for S 3 x S s 2  from the I, coefficients for 
S, 2 S I ,  e.g. 

[211 [211 [211 
[21 121 121 

and obtain 

The I ,  coefficients for groups S , - S ,  have been calculated and tabulated by the above 
procedures and will be published elsewhere (Li and Zhang 1987). 

The I ,  coefficients have the following orthogonal properties: 

[ A  1 [PI [ V I 1  [ A  1 [ P  1 
r , ,5 , ,  ' J "([A-l,r , , ]  [ ~ * . - 1 , s n I  [v - l , rn~ , ) " ( [A- l , rn I  [ ~ - - 1 , s n I  [v - l , t n I j  

The symmetry properties of I ,  coefficients are an important problem for the sym- 
metric group. I n  most cases, a permutation of the columns only causes a change in 
the phase of I ,  and leaves its absolute value unchanged. Hamermesh (1962) has proved 
that when [ A ]  # [p] # [ v ]  this changed phase can be chosen to be positive or negative 
arbitrarily. But in the case of [ A ]  = [ p ]  # [v], the symmetry under odd permutations 
of the columns depends on whether the representation [ v ]  occurs in the space of a 
symmetric or antisymmetric square of [ A ] .  I f  we make the decomposition of the space 
of symmetric and antisymmetric squares of each representation and define the phase 
factor (-1)'"]= 1 for those [ v] c [A][21 and (-1)["] = -1 for those [ v ]  c [A][121,  then 
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the parity of every representation is given by a phase factor (-1)[^’ and the Z, coefficients 
transform as the basis of the representation [3] or El’] under the S3 permutation of 
three columns: 

([LP1l] [A-11 [ v - l ] ,  
x e ( [ A - 1 ) ][ p - 1 1 [ v - 1 I),  I, 

where the factor O is in!roduced to distinguish the behaviour of those [ v]  c [A][*’( O = 1)  
from those [ v] c [ A ] [ ’ - ] ( O  = -1) when the multiplicity of the reduction [ A ]  x [ A ]  + [ v] 
is greater than one. 

A rather different and interesting property emerges when [ A ]  = [ p ]  = [ v]. Derome 
(1966) has discussed that it is not always possible to choose the coefficient such that 
its absolute value is invariant under every permutation of the columns. In the following 
description, for the purpose of generalisation we use the symbol r to denote an 
irreducible representation of an arbitrary group. Since the transformation property of 
V(;;  f, f;) coefficients under a permutation of columns is identical with that of the 
tensor product function +:, +:,+:, under the corresponding permutation of basis states, 
the V coefficients may transform as the irreducible bases of S3 .  After all the tensor 
product functions are divided into three subspaces r”‘] with definite symmetry type 
[3], [13] or [21] then, if and only if the subspace contains at least one identity 
representation A, the reduction coupling of the corresponding subspace is possible. 
Otherwise the V coefficients vanish identically. 

Suppose that the multiplicity of the reduction of the direct product space r x r + 

equals f and the identity representation A occurs (f,,fi,h) times in the subspace 
(r13], r“”, r[*’]), which can be determined by the characters of the corresponding 
space given as (Boyle 1972, Ford 1972) 

(14) 

Then f groups of V coefficients have three kinds of symmetry properties; (fl , f i ,  2f3) 
groups of V coefficients have symmetry type ([3], [13], [21]) under the permutations 
of the columns. 

The first example of a V coefficient with symmetry type [21] (mixed symmetry) is 
the reduction coefficient of [321] x [321] + 5[321] for S b ,  where the numbers of totally 
symmetric representation [6] occurring in the space [321][’], [321][’31 and [321][*’] 
are 2 ,  1 and 1. Therefore, there are two groups of V coefficients transforming as two 
bases of the representation [21]. Due to this symmetry property of V coefficients, the 
symmetry of I ,  coefficients can be easily deduced and summarised as follows: I ,  
coefficients may transform as any one of the irreducible bases of S3 under the permuta- 
tions of the columns: 

[ A I  [PI 

,y(r[”: R )  =:E KY~[Ti(Py)[,y’-(R)]’’~[~l-(RZ)]Y~. . . [ , y“ (R”) ]”~~ .  



6190 Q Zhang and X Li 

where [ T I  and [p]  can be any one of the representations [3], [13], [21] of S3,  and DLV1 
and DLpl are the related representation matrices. 

For example, 

= [0, -id51 [321] [321] [321]1 [321] [321] [321]5 
[321 [321 [3121 ) ’ I i (  [32] [32] [312] 

where 4 and 5 are the multiplicity indices. Then, from equation (15), if we take @ as 
a transposition (2,3)  of the second and third columns, we have 

[321] [321] [32114 [321] [321] [32115 
[321 [321 [3121 ) ’  ‘ I (  [32] [32] [312] 

[321] [321] [32114 [321] [321] [32115 
=[zi( [321 [3121 1321 ) ’  [32] [312] [32] 

where the I ,  coefficients and phase factors are determined by the above procedures 
and taken from our other paper (Li and Zhang 1987). 

Using the relation between the matrix elements of [ A ]  and its conjugate [XI, we have 

[PI 

where the phase factor 6 = *1 depends on the conventions of the phase factor of Zi 
coefficients for S, and S , - , .  Butler and Ford (1979) have discussed the conjugate 
symmetry and pointed out that both symmetry relations (13) and (16) hold simul- 
taneously. We note when the permutation symmetry is the mixed symmetry [21], both 
symmetries (15) and (16) hold simultaneously unless both [ A ]  and [ v] are self-conjugate 
representations. 

3. Outer-product coupling coefficient for the symmetric group 

Suppose l[Al]rl) and l[Az]r2) are the standard bases for S,, and S,?. We can use the 
so-called outer-product coupling coefficients ( OPCC) to couple these bases to the 
standard bases for S, ( n  = n, + n2): 

where [ A ]  is contained in the decomposition of the outer direct product [h,]@[A,] 
given by the Littlewood rule, and w 1  = { i ,  < i2 < . . . < inI} and w’ = { j ,  < j ,  < . . . < jn2}  
are the sets of particle indices which are selected from {1,2, . . . , n } .  The function 
~[A,]r’w‘)(![A2]r2w‘) similarly) is the standard basis of S n I ( w 1 ) ,  i.e. the group of 
permutations which operate on the n ,  objects labelled by ( i , ,  i 2 , .  . . , in,). This basis 
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is adapted to the subgroup chain 

S,,( i , i z ,  . . . , i , ,, i,,l) 2 S, , , -  ( i , i , ,  . . . , i n , - , )  3 . . .= S l ( i l )  ( 1 8 )  

and obtained by index replacement from the standard basis l [ A l ] r ' w A )  of S,,,(wA) = S, : 

( 1 9 )  
~ [ A I ] ~ ' u ' ) = (  i l  1 2  i 2 ~ l l ~ ~ , ) l [ A ~ l r ' d ) .  

As an example, the standard basis / [ 2 1 ] 2 )  of S3(2, 3 , s )  is denoted by the tableau 
By using the well known Racah ( 1 9 6 5 )  factorisation lemma, the OPCC can be expressed 
as the product of an S, 2 S,- l@S,  outer-product isoscalar factor ( I o  coefficient for 
short) and  the coefficient for S n - ' ,  i.e. 

when the index n is contained in the set of U ' ,  where r / r ,  denotes the Young tableau 
obtained by removing the square for index n from the Young tableau l [ A ] r ) .  On the 
other hand, when the index n is in the w 2 ,  we have 

For example, we have 

.( 1 oia) 
Then any OPCC can be obtained by successive products of the corresponding Io 
coefficjents. 

Now we seek an equation with which the double coset technique can be used. 
From equation (3), take w ' = o A = { l , 2 , .  . . ,  n , } ,  w - = w o = { n , + l ,  n , + 2  , . . . ,  n } ,  we 
have 

7 2  

1 ([ h t '1 p2 1 [ A r ')( [ A ] r 7 1 p2i [ A ] r I p ') ( 2 2 )  
n1 !fr*1 
n ! f [ * , l  P2 

-- - 

where I [ A ] r ' p 2 )  is the standard basis for S,.  The symbol rl shows that the partial 
Young tableau of l [ A ] r ' p ' ) ,  which is occupied by particles { 1 , 2 , .  . . , n l } ,  is identical 
with the Young tableau I I A 1 ] r ' )  for S,, . But the remaining part of the tableau occupied 
by particles { n l  + 1 ,  n, + 2 , .  . . , n } ,  which is usually not a possible standard tableau, is 
denoted by p 2 .  By using a double coset decomposition of S,, with respect to 
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These relations are valid not only for the one-particle I o ,  but also for many-particle 
I ,  which is the product of several one-particle I o .  The absolute value of lo remains 
unchanged under the permutation of the first two columns. The symmetry relation is 
formally similar to equation (13), but the phase factors (-1)["] and 0 are different. 
The Io coefficients of mutual conjugate representations have the relation, similar to 
equation (16), 

Equation (23) is convenient and powerful for the evaluation of Io  coefficients. In 
fact, it is even easier than the evaluation of I i .  The tabulation of I, ,  is achieved by the 
following steps. 

( i)  We first calculate the Z, for the reduction of the outer product Sn - IOSI ,  which 
are given as 

and the Io for S , , -20S2 are given as 
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where [ A ]  is the representation of S, obtained by adding two squares to the Young 
diagram [ A l ]  of S n - 2 ,  7 is the hook length from the square 7: to the square p:, which 
are the two new added squares and  two possible locations for filling the index n, but 
the length index is defined as p', 3 7;. 8cAzl = 1 or  -1 for [A,]  = [2] or [l']. 

( i i )  Next we calculate the I ,  coefficients for the outer product S,, 0 S,,. ( n2  = 3,4,  . . . ) 
by equation (23) from the known lo coefficients and the extended Condon-Shortley 
convention 

This convention determines the choice of phase of the normalisation factor (see 
equation (4))  of I o .  

(iii) By the above procedures we obtain all the Io coefficients with the form of 

When the phase factors (-1)'"' have been evaluated, the tabulation of Io is completed. 
We use the orthogonal relation (24) and take (-1)["] = 1 for the determination of the 
phase factors (-l)[A1. 

It is interesting that the evaluated phase factors (-1)["] satisfy the following rule. 
If the phase factor (-1)'"' of some representation of S, is known, the phase factor 
( - 1 ) [" + '.r,,+ I 1  of the representation [ A  + 1, r,,,,], which is obtained by adding one square 
to the r,,+,th row of [A] ,  is given by 

(31) (-1)[A+IJ,,+,l = (-1)Pl+r,>+,+l. 

By using this rule the phase factor (-1)[*] can be given by 
(-1)[Al= (-1)r,+r2+ + r , ? + n  - - ( - l ) L , ( r - l ) A ,  

The Io coefficients of S,-S, are calculated and tabulated, which will be reported 
elsewhere. 

4. CG coefficient for the unitary group 

Based on the duality between the symmetric and unitary groups, it was shown that 
the irreducible basis for U(N) can be achieved by the projection operator of the 
symmetric group. Weyl (1946) used an idempotent Young operator to construct his 
Weyl basis. The canonical basis for the unitary group is the so-called Gelfand basis 
which is adapted to the subgroup chain U(  N )  = U( N - 1)  1. . .2 U( 1)  and denoted 
by the Gelfand symbol / ( A ) m )  or Weyl tableau / ( A ) U ) .  

CG coefficients for the unitary group discussed in this paper are defined as the 
coupling of the Gelfand bases 

Many authors (Kaplan 1974, Lezuo 1972, Patterson and Harter 1976a, b, Sarma and  
Sahasrabudhe 1980, Dinesha er al 1981) have shown that the construction of the 
Gelfand basis can be carried out by using the standard projection operators of the 
symmetric group. I t  was proved (Chen er a1 1977) that the quasistandard basis of 
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the state permutation groups is identical with the Gelfand basis of the unitary group. 
Then it was shown (Chen er a1 l978,1984a, b) that the outer-product coupling coefficient 
is the coupling coefficient for the U(  m + n) U( m )  x U( n )  irreducible bases and the 
CG coefficient for the Gelfand basis of SU(n).  Since CG coefficients can be expressed 
by successive products of the isoscalar factors of the unitary group ( I ,  for short) due 
to the Racah factorisation lemma, we only need the formula for I ,  and its relation to 
Io coefficients for the state permutation groups. The Io for the state permutation groups 
are numerically identical with Io for the particle permutation groups, but the particle 
indices are replaced by the state indices. 

The canonical bases for U ( N )  are generated by using the standard projection 
operator 6L:l to the primitive function 

where D[,:]( e) is a standard Young-Yamanouchi representation matrix element and P 
is the permutation operating on a state index. The I ,  coefficient is independent of the 
Weyl tableau of U( N - l ) ,  i.e. the shaded part of the Weyl tableau 

I , (U(N)  = U(N-1)) = 

Then we can choose the primitive function so that the state 4N can appear several 
times but the other states appear only once. When the state 4N appears f times, the 
canonical basis / ( A )  W )  is expressed by 

where 

I[ v]t’t’)  is the standard basis for the state permutation group, in which the state 4N 
appears f times in the partial part t2 of the tableau. Then we obtain the following 
formula for the calculation of I ,  by Io  coefficients of the symmetric group: 

( A )  ( P )  1 (’)) = [~~]f[Al]f~~l]nl !n2!g! 

( ( A I )  (PI) ( V I )  frA]frp]f[~~]~!gl !g2! 



Coupling coejicient for S,, and U ( N ) 6195 

The meaning of each symbol is as follows. (l[h]r 'p2),  I[p]s 'v ') ,  l [ ~ ] t ' [ ~ ) )  are the 
Young tableaux for the groups (S,,,  , S,, ,  S " ) .  Io(/:,\ / ~ , \ l [ ~ ~ ~ )  is f-state I o  coefficient, 
which is equal to the product o f f  one-state Io coefficients, for example 

([A,], [p,], [Y,]) are the representations for the groups ( S , , ,  S g 2 ,  S,) and obtained by 
detaching (f, , f 2 , f )  squares from the Young diagrams ([A], [ p ] ,  [ V I )  in the order from 
the greater to smaller state index which is denoted by ( p 2 ( w ' ) ,  q 2 ( 0 2 ) ,  t2),  where 
g, = n ,  - f , ,  g2  = n2 -h, g = n -f, w '  is the set of f, indices selected from n, 
n - 1 , .  . . , n -f+ 1 and w 2  is the set of remaining indices. 

The orthogonal relations and symmetry properties of I,, are formally similar to 
those of Io .  Another property of I , ,  which should be pointed out, is that I ,  coefficients 
calculated by equation (37) are independent of the rank of the unitary group and are 
available for arbitrary N. 

A simple example is illustrated here. We calculate a I ,  coefficient where the state 
4N is doubly occupied. By (27)-(29) and  (37), we have 

= J,[3J2( 2 1  - f )  + ( - f J 2 ) 3  = - f J 3  

5. Conclusion 

The present discussion on the inner-product coupling coefficient ( IPCC) largely based 
on Hamermesh's K coefficient (the isoscalar factor). One notes that the idea of the 
K coefficient is rather powerful, but the computation method provided by Hamermesh 
needs algebra equations to be solved which is a tedious procedure, as pointed out by 
Hamermesh himself. We introduced the double coset technique to improve the compu- 
tation method and gave a recursion formula for the isoscalar factor. Although this 
formula is formally complicated by notation, the practical calculation is very simple 
and easy. 

Many authors have paid great attention to the importance of IPCC, and a number 
of contributions have been presented on the subject. However, people d o  not pay 
enough attention to the outer-product coupling coefficient (OPCC) for S,. By virtue of 
the duality between the outer-product reduction of S ,  and the Kronecker product 
reduction of U ( N ) ,  the OPCC may play a n  important role in group representation 
theory. On the other hand, the OPCC are used extensively in physics and chemistry. 
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In the present paper, we have discussed how to exploit the DC technique to deduce a 
direct computation formula for Io coefficients, and  then we calculated the OPCC. By 
the duality of the basis of S, and U(  N), the isoscalar factor for U (  N )  2 U( N - 1) is 
related to Io coefficients. 

We have outlined some of our major results on the coupling coefficients for S, and 
U ( N ) .  The present method has been used to make practical calculations for S, and 
U(  N).  Some distinct formulae for the coupling of many-electron Gelfand bases were 
found, Based on our results, we obtain a new formulation for the matrix element of 
a spin-dependent operator. This and other aspects of our work will be developed in 
other work, to appear subsequently. 
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